↳ Prolog
↳ PrologToPiTRSProof
times_in(s(X), Y, Z) → U4(X, Y, Z, even_in(s(X), B))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
even_in(0, true) → even_out(0, true)
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
U4(X, Y, Z, even_out(s(X), B)) → U5(X, Y, Z, if_in(B, s(X), Y, Z))
if_in(false, s(X), Y, Z) → U9(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U9(X, Y, Z, times_out(X, Y, U)) → U10(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U3(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U3(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U10(X, Y, Z, plus_out(Y, U, Z)) → if_out(false, s(X), Y, Z)
if_in(true, s(X), Y, Z) → U6(X, Y, Z, half_in(s(X), X1))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
half_in(0, 0) → half_out(0, 0)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U6(X, Y, Z, half_out(s(X), X1)) → U7(X, Y, Z, times_in(X1, Y, Y1))
U7(X, Y, Z, times_out(X1, Y, Y1)) → U8(X, Y, Z, plus_in(Y1, Y1, Z))
U8(X, Y, Z, plus_out(Y1, Y1, Z)) → if_out(true, s(X), Y, Z)
U5(X, Y, Z, if_out(B, s(X), Y, Z)) → times_out(s(X), Y, Z)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
times_in(s(X), Y, Z) → U4(X, Y, Z, even_in(s(X), B))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
even_in(0, true) → even_out(0, true)
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
U4(X, Y, Z, even_out(s(X), B)) → U5(X, Y, Z, if_in(B, s(X), Y, Z))
if_in(false, s(X), Y, Z) → U9(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U9(X, Y, Z, times_out(X, Y, U)) → U10(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U3(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U3(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U10(X, Y, Z, plus_out(Y, U, Z)) → if_out(false, s(X), Y, Z)
if_in(true, s(X), Y, Z) → U6(X, Y, Z, half_in(s(X), X1))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
half_in(0, 0) → half_out(0, 0)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U6(X, Y, Z, half_out(s(X), X1)) → U7(X, Y, Z, times_in(X1, Y, Y1))
U7(X, Y, Z, times_out(X1, Y, Y1)) → U8(X, Y, Z, plus_in(Y1, Y1, Z))
U8(X, Y, Z, plus_out(Y1, Y1, Z)) → if_out(true, s(X), Y, Z)
U5(X, Y, Z, if_out(B, s(X), Y, Z)) → times_out(s(X), Y, Z)
TIMES_IN(s(X), Y, Z) → U41(X, Y, Z, even_in(s(X), B))
TIMES_IN(s(X), Y, Z) → EVEN_IN(s(X), B)
EVEN_IN(s(s(X)), B) → U11(X, B, even_in(X, B))
EVEN_IN(s(s(X)), B) → EVEN_IN(X, B)
U41(X, Y, Z, even_out(s(X), B)) → U51(X, Y, Z, if_in(B, s(X), Y, Z))
U41(X, Y, Z, even_out(s(X), B)) → IF_IN(B, s(X), Y, Z)
IF_IN(false, s(X), Y, Z) → U91(X, Y, Z, times_in(X, Y, U))
IF_IN(false, s(X), Y, Z) → TIMES_IN(X, Y, U)
U91(X, Y, Z, times_out(X, Y, U)) → U101(X, Y, Z, plus_in(Y, U, Z))
U91(X, Y, Z, times_out(X, Y, U)) → PLUS_IN(Y, U, Z)
PLUS_IN(s(X), Y, s(Z)) → U31(X, Y, Z, plus_in(X, Y, Z))
PLUS_IN(s(X), Y, s(Z)) → PLUS_IN(X, Y, Z)
IF_IN(true, s(X), Y, Z) → U61(X, Y, Z, half_in(s(X), X1))
IF_IN(true, s(X), Y, Z) → HALF_IN(s(X), X1)
HALF_IN(s(s(X)), s(Y)) → U21(X, Y, half_in(X, Y))
HALF_IN(s(s(X)), s(Y)) → HALF_IN(X, Y)
U61(X, Y, Z, half_out(s(X), X1)) → U71(X, Y, Z, times_in(X1, Y, Y1))
U61(X, Y, Z, half_out(s(X), X1)) → TIMES_IN(X1, Y, Y1)
U71(X, Y, Z, times_out(X1, Y, Y1)) → U81(X, Y, Z, plus_in(Y1, Y1, Z))
U71(X, Y, Z, times_out(X1, Y, Y1)) → PLUS_IN(Y1, Y1, Z)
times_in(s(X), Y, Z) → U4(X, Y, Z, even_in(s(X), B))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
even_in(0, true) → even_out(0, true)
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
U4(X, Y, Z, even_out(s(X), B)) → U5(X, Y, Z, if_in(B, s(X), Y, Z))
if_in(false, s(X), Y, Z) → U9(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U9(X, Y, Z, times_out(X, Y, U)) → U10(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U3(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U3(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U10(X, Y, Z, plus_out(Y, U, Z)) → if_out(false, s(X), Y, Z)
if_in(true, s(X), Y, Z) → U6(X, Y, Z, half_in(s(X), X1))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
half_in(0, 0) → half_out(0, 0)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U6(X, Y, Z, half_out(s(X), X1)) → U7(X, Y, Z, times_in(X1, Y, Y1))
U7(X, Y, Z, times_out(X1, Y, Y1)) → U8(X, Y, Z, plus_in(Y1, Y1, Z))
U8(X, Y, Z, plus_out(Y1, Y1, Z)) → if_out(true, s(X), Y, Z)
U5(X, Y, Z, if_out(B, s(X), Y, Z)) → times_out(s(X), Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
TIMES_IN(s(X), Y, Z) → U41(X, Y, Z, even_in(s(X), B))
TIMES_IN(s(X), Y, Z) → EVEN_IN(s(X), B)
EVEN_IN(s(s(X)), B) → U11(X, B, even_in(X, B))
EVEN_IN(s(s(X)), B) → EVEN_IN(X, B)
U41(X, Y, Z, even_out(s(X), B)) → U51(X, Y, Z, if_in(B, s(X), Y, Z))
U41(X, Y, Z, even_out(s(X), B)) → IF_IN(B, s(X), Y, Z)
IF_IN(false, s(X), Y, Z) → U91(X, Y, Z, times_in(X, Y, U))
IF_IN(false, s(X), Y, Z) → TIMES_IN(X, Y, U)
U91(X, Y, Z, times_out(X, Y, U)) → U101(X, Y, Z, plus_in(Y, U, Z))
U91(X, Y, Z, times_out(X, Y, U)) → PLUS_IN(Y, U, Z)
PLUS_IN(s(X), Y, s(Z)) → U31(X, Y, Z, plus_in(X, Y, Z))
PLUS_IN(s(X), Y, s(Z)) → PLUS_IN(X, Y, Z)
IF_IN(true, s(X), Y, Z) → U61(X, Y, Z, half_in(s(X), X1))
IF_IN(true, s(X), Y, Z) → HALF_IN(s(X), X1)
HALF_IN(s(s(X)), s(Y)) → U21(X, Y, half_in(X, Y))
HALF_IN(s(s(X)), s(Y)) → HALF_IN(X, Y)
U61(X, Y, Z, half_out(s(X), X1)) → U71(X, Y, Z, times_in(X1, Y, Y1))
U61(X, Y, Z, half_out(s(X), X1)) → TIMES_IN(X1, Y, Y1)
U71(X, Y, Z, times_out(X1, Y, Y1)) → U81(X, Y, Z, plus_in(Y1, Y1, Z))
U71(X, Y, Z, times_out(X1, Y, Y1)) → PLUS_IN(Y1, Y1, Z)
times_in(s(X), Y, Z) → U4(X, Y, Z, even_in(s(X), B))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
even_in(0, true) → even_out(0, true)
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
U4(X, Y, Z, even_out(s(X), B)) → U5(X, Y, Z, if_in(B, s(X), Y, Z))
if_in(false, s(X), Y, Z) → U9(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U9(X, Y, Z, times_out(X, Y, U)) → U10(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U3(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U3(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U10(X, Y, Z, plus_out(Y, U, Z)) → if_out(false, s(X), Y, Z)
if_in(true, s(X), Y, Z) → U6(X, Y, Z, half_in(s(X), X1))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
half_in(0, 0) → half_out(0, 0)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U6(X, Y, Z, half_out(s(X), X1)) → U7(X, Y, Z, times_in(X1, Y, Y1))
U7(X, Y, Z, times_out(X1, Y, Y1)) → U8(X, Y, Z, plus_in(Y1, Y1, Z))
U8(X, Y, Z, plus_out(Y1, Y1, Z)) → if_out(true, s(X), Y, Z)
U5(X, Y, Z, if_out(B, s(X), Y, Z)) → times_out(s(X), Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
HALF_IN(s(s(X)), s(Y)) → HALF_IN(X, Y)
times_in(s(X), Y, Z) → U4(X, Y, Z, even_in(s(X), B))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
even_in(0, true) → even_out(0, true)
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
U4(X, Y, Z, even_out(s(X), B)) → U5(X, Y, Z, if_in(B, s(X), Y, Z))
if_in(false, s(X), Y, Z) → U9(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U9(X, Y, Z, times_out(X, Y, U)) → U10(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U3(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U3(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U10(X, Y, Z, plus_out(Y, U, Z)) → if_out(false, s(X), Y, Z)
if_in(true, s(X), Y, Z) → U6(X, Y, Z, half_in(s(X), X1))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
half_in(0, 0) → half_out(0, 0)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U6(X, Y, Z, half_out(s(X), X1)) → U7(X, Y, Z, times_in(X1, Y, Y1))
U7(X, Y, Z, times_out(X1, Y, Y1)) → U8(X, Y, Z, plus_in(Y1, Y1, Z))
U8(X, Y, Z, plus_out(Y1, Y1, Z)) → if_out(true, s(X), Y, Z)
U5(X, Y, Z, if_out(B, s(X), Y, Z)) → times_out(s(X), Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
HALF_IN(s(s(X)), s(Y)) → HALF_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
HALF_IN(s(s(X))) → HALF_IN(X)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
PLUS_IN(s(X), Y, s(Z)) → PLUS_IN(X, Y, Z)
times_in(s(X), Y, Z) → U4(X, Y, Z, even_in(s(X), B))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
even_in(0, true) → even_out(0, true)
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
U4(X, Y, Z, even_out(s(X), B)) → U5(X, Y, Z, if_in(B, s(X), Y, Z))
if_in(false, s(X), Y, Z) → U9(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U9(X, Y, Z, times_out(X, Y, U)) → U10(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U3(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U3(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U10(X, Y, Z, plus_out(Y, U, Z)) → if_out(false, s(X), Y, Z)
if_in(true, s(X), Y, Z) → U6(X, Y, Z, half_in(s(X), X1))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
half_in(0, 0) → half_out(0, 0)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U6(X, Y, Z, half_out(s(X), X1)) → U7(X, Y, Z, times_in(X1, Y, Y1))
U7(X, Y, Z, times_out(X1, Y, Y1)) → U8(X, Y, Z, plus_in(Y1, Y1, Z))
U8(X, Y, Z, plus_out(Y1, Y1, Z)) → if_out(true, s(X), Y, Z)
U5(X, Y, Z, if_out(B, s(X), Y, Z)) → times_out(s(X), Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
PLUS_IN(s(X), Y, s(Z)) → PLUS_IN(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
PLUS_IN(s(X), Y) → PLUS_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
EVEN_IN(s(s(X)), B) → EVEN_IN(X, B)
times_in(s(X), Y, Z) → U4(X, Y, Z, even_in(s(X), B))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
even_in(0, true) → even_out(0, true)
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
U4(X, Y, Z, even_out(s(X), B)) → U5(X, Y, Z, if_in(B, s(X), Y, Z))
if_in(false, s(X), Y, Z) → U9(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U9(X, Y, Z, times_out(X, Y, U)) → U10(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U3(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U3(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U10(X, Y, Z, plus_out(Y, U, Z)) → if_out(false, s(X), Y, Z)
if_in(true, s(X), Y, Z) → U6(X, Y, Z, half_in(s(X), X1))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
half_in(0, 0) → half_out(0, 0)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U6(X, Y, Z, half_out(s(X), X1)) → U7(X, Y, Z, times_in(X1, Y, Y1))
U7(X, Y, Z, times_out(X1, Y, Y1)) → U8(X, Y, Z, plus_in(Y1, Y1, Z))
U8(X, Y, Z, plus_out(Y1, Y1, Z)) → if_out(true, s(X), Y, Z)
U5(X, Y, Z, if_out(B, s(X), Y, Z)) → times_out(s(X), Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
EVEN_IN(s(s(X)), B) → EVEN_IN(X, B)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
EVEN_IN(s(s(X))) → EVEN_IN(X)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_IN(false, s(X), Y, Z) → TIMES_IN(X, Y, U)
IF_IN(true, s(X), Y, Z) → U61(X, Y, Z, half_in(s(X), X1))
U41(X, Y, Z, even_out(s(X), B)) → IF_IN(B, s(X), Y, Z)
U61(X, Y, Z, half_out(s(X), X1)) → TIMES_IN(X1, Y, Y1)
TIMES_IN(s(X), Y, Z) → U41(X, Y, Z, even_in(s(X), B))
times_in(s(X), Y, Z) → U4(X, Y, Z, even_in(s(X), B))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
even_in(0, true) → even_out(0, true)
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
U4(X, Y, Z, even_out(s(X), B)) → U5(X, Y, Z, if_in(B, s(X), Y, Z))
if_in(false, s(X), Y, Z) → U9(X, Y, Z, times_in(X, Y, U))
times_in(0, Y, 0) → times_out(0, Y, 0)
U9(X, Y, Z, times_out(X, Y, U)) → U10(X, Y, Z, plus_in(Y, U, Z))
plus_in(s(X), Y, s(Z)) → U3(X, Y, Z, plus_in(X, Y, Z))
plus_in(0, Y, Y) → plus_out(0, Y, Y)
U3(X, Y, Z, plus_out(X, Y, Z)) → plus_out(s(X), Y, s(Z))
U10(X, Y, Z, plus_out(Y, U, Z)) → if_out(false, s(X), Y, Z)
if_in(true, s(X), Y, Z) → U6(X, Y, Z, half_in(s(X), X1))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
half_in(0, 0) → half_out(0, 0)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U6(X, Y, Z, half_out(s(X), X1)) → U7(X, Y, Z, times_in(X1, Y, Y1))
U7(X, Y, Z, times_out(X1, Y, Y1)) → U8(X, Y, Z, plus_in(Y1, Y1, Z))
U8(X, Y, Z, plus_out(Y1, Y1, Z)) → if_out(true, s(X), Y, Z)
U5(X, Y, Z, if_out(B, s(X), Y, Z)) → times_out(s(X), Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_IN(false, s(X), Y, Z) → TIMES_IN(X, Y, U)
IF_IN(true, s(X), Y, Z) → U61(X, Y, Z, half_in(s(X), X1))
U41(X, Y, Z, even_out(s(X), B)) → IF_IN(B, s(X), Y, Z)
U61(X, Y, Z, half_out(s(X), X1)) → TIMES_IN(X1, Y, Y1)
TIMES_IN(s(X), Y, Z) → U41(X, Y, Z, even_in(s(X), B))
half_in(s(s(X)), s(Y)) → U2(X, Y, half_in(X, Y))
even_in(s(s(X)), B) → U1(X, B, even_in(X, B))
even_in(s(0), false) → even_out(s(0), false)
U2(X, Y, half_out(X, Y)) → half_out(s(s(X)), s(Y))
U1(X, B, even_out(X, B)) → even_out(s(s(X)), B)
half_in(0, 0) → half_out(0, 0)
even_in(0, true) → even_out(0, true)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
U41(X, Y, even_out(B)) → IF_IN(B, s(X), Y)
U61(Y, half_out(X1)) → TIMES_IN(X1, Y)
IF_IN(false, s(X), Y) → TIMES_IN(X, Y)
IF_IN(true, s(X), Y) → U61(Y, half_in(s(X)))
TIMES_IN(s(X), Y) → U41(X, Y, even_in(s(X)))
half_in(s(s(X))) → U2(half_in(X))
even_in(s(s(X))) → U1(even_in(X))
even_in(s(0)) → even_out(false)
U2(half_out(Y)) → half_out(s(Y))
U1(even_out(B)) → even_out(B)
half_in(0) → half_out(0)
even_in(0) → even_out(true)
half_in(x0)
even_in(x0)
U2(x0)
U1(x0)
IF_IN(false, s(X), Y) → TIMES_IN(X, Y)
half_in(s(s(X))) → U2(half_in(X))
even_in(s(s(X))) → U1(even_in(X))
even_in(s(0)) → even_out(false)
POL(0) = 0
POL(IF_IN(x1, x2, x3)) = x1 + x2 + x3
POL(TIMES_IN(x1, x2)) = 2·x1 + x2
POL(U1(x1)) = 2·x1
POL(U2(x1)) = 2 + 2·x1
POL(U41(x1, x2, x3)) = 1 + 2·x1 + x2 + x3
POL(U61(x1, x2)) = x1 + x2
POL(even_in(x1)) = x1
POL(even_out(x1)) = x1
POL(false) = 0
POL(half_in(x1)) = x1
POL(half_out(x1)) = 2·x1
POL(s(x1)) = 1 + 2·x1
POL(true) = 0
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
U41(X, Y, even_out(B)) → IF_IN(B, s(X), Y)
U61(Y, half_out(X1)) → TIMES_IN(X1, Y)
IF_IN(true, s(X), Y) → U61(Y, half_in(s(X)))
TIMES_IN(s(X), Y) → U41(X, Y, even_in(s(X)))
U2(half_out(Y)) → half_out(s(Y))
U1(even_out(B)) → even_out(B)
half_in(0) → half_out(0)
even_in(0) → even_out(true)
half_in(x0)
even_in(x0)
U2(x0)
U1(x0)